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Abstract—A novel synthesis of 5-aryl-4-bromo-3-carboxyisoxazoles employing a [3+2] cycloaddition of a nitrile N-oxide with
2-aryl-1-bromoalkynes as the key step is described. The utility of these 5-aryl-4-bromo-3-carboxyisoxazoles in the solid-phase
synthesis of 4,5-diarylisoxazoles is demonstrated.
� 2007 Published by Elsevier Ltd.
The isoxazole moiety represents an interesting pharma-
cophoric element which is found in a variety of poten-
tially useful therapeutic agents.1 More specifically,
isoxazoles possessing two neighboring aryl substituents
have recently been shown to exhibit biological activity
as COX-2 inhibitors.1e–h Therefore, a diverse collection
of diarylisoxazoles is a potentially useful source of new
drug leads.

A solid-phase route to an encoded2 combinatorial collec-
tion of 4,5-diarylisoxazole derivatives was envisaged
which would utilize custom-made 5-aryl-4-bromo-3-
carboxyisoxazole scaffolds 2 as one of three diversity
elements3 (Scheme 1). Herein, we report our recent
findings on the [3+2] cycloaddition reaction of 2-aryl-
1-bromoalkynes with the nitrile N-oxide derived from
THP-protected 2-nitroethanol for the synthesis of the
requisite 5-aryl-4-bromoisoxazole scaffolds 2, and their
utility in the solid-phase synthesis of 4,5-diarylisoxazoles
5 via Suzuki coupling4 with boronic acids.

The [3+2] cycloaddition reaction of nitrile oxides with
2-aryl-1-haloalkynes has received little attention in the
literature to date.5,6 To further demonstrate the utility
of arylhaloalkynes as precursors to arylhaloisoxazoles,
and because a diverse collection of 2-aryl-1-bromoalky-
nes are readily accessible from functionalized benzalde-
hydes via a two-step protocol involving Corey–Fuchs
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reaction7 followed by DBU-mediated HBr elimination,8

we undertook a study of the scope of the cycloaddition
reaction of arylbromoalkynes as shown in Table 1.

In an attempt to directly access the requisite carboxy
functionality at C(3) of isoxazoles 2 we initiated our
studies on the scope of arylbromoalkyne cycloaddition
reactions with nitrile N-oxide 6 (R1 = C(O)OEt)
derived from base-induced dehydrohalogenation of
commercially available ethylchlorooximidoacetate
(Table 1, entry 1).9 This reaction was unsuccessful and
gave no desired isoxazole containing products. The
2-phenyl-1-bromoalkyne 7 (R2 = Ph) was recovered
unchanged after the attempted reaction. Failure of
the reaction is attributed to a rapid and competing
dimerization of the nitrile N-oxide derived from the
chlorooximidoacetate.10

Next, we examined the use of the nitrile N-oxide gener-
ated in situ from the dehydration of nitroethane
(R1 = Me) using the Mukaiyama method.11 As shown
in entry 2, the methyl substituted isoxazole 8b was
formed in 23% yield as a single regioisomer. Given the
success of this method, we reasoned that the carboxy
functionality ultimately needed for attachment of re-
sin-bound amines at C-3 of the isoxazole scaffolds could
be indirectly accessed from the use of commercially
available THP-protected 2-nitroethanol12 as the nitrile
N-oxide precursor (vide infra). We were pleased to find
that reaction of 6 (R1 = CH2OTHP) with 1-phenyl-2-
bromoethyne gave 8c in 28% yield as a single regio-
isomer (entry 3).
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Entryb R1 R2 Product Yieldc (%)

1 C(O)OMe Ph 8a No reaction
2 Me Ph 8b 23
3 CH2OTHP Ph 8c 28
4 CH2OTHP 4-ClPh 8d 24
5 CH2OTHP 3-Pyridyl 8e 25
6 CH2OTHP 4-MeOPh 8f 25
7 CH2OTHP 4-MePh 8g 26
8 CH2OTHP 4-FPh 8h 44
9 CH2OTHP 3-Furyl 8i 32

10 CH2OTHP 3-MeOPh 8j 22
11 CH2OTHP 4-MeSPh 8k 31
12 CH2OTHP 3-ClPh 8l 31
13 CH2OTHP 5-Benzo[1,3]dioxolyl 8m 35

a All new compounds 8b–m were obtained as single regioisomers;
regiochemical assignment is made on the basis of diagnostic 13C
resonances using data for compound 8g.

b For general experimental conditions see Ref. 11.
c Yields are unoptimized and are based upon the weight of purified

material isolated after standard silica gel chromatography.
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Finally, the use of substituted aryl and heteroarylbromo
alkynes were investigated in the [3+2] cycloaddition
with the nitrile N-oxide generated in situ via dehydra-
tion of THP-protected 2-nitroethanol (entries 4–13).
All of the isoxazole products were formed as a single
regioisomer13 in yields ranging from 22% to 44%. The
cycloaddition tolerates a variety of substituted phenyl
groups as well as aromatic heterocycles. The reaction
is currently unoptimized and it is possible that a higher
dilution and a slower syringe pump addition of the 2-(2-
nitroethoxy)tetrahydropyran would lead to increased
yields by helping to minimize the undesired, competing
dimerization of the in situ generated nitrile N-oxide.10,14

The reactions are easily purified by flash chromatogra-
phy and several grams of product, sufficient for incorpo-
ration into an encoded split synthesis,2 are obtained in a
single run.15 The elaboration of 5-aryl-4-bromoisoxaz-
oles 8c–m to carboxylic acids 10c–m, containing the req-
uisite C-3 carboxy functionality for attachment to resin
bound amines, is detailed in Scheme 2.

First, the THP ethers in 8c–m were cleanly cleaved in a
quantitative yield with Dowex-H+ resin in MeOH16 to
unmask the hydroxymethyl group at C(3) of the 5-
aryl-4-bromoisoxazoles. Alcohols 9c–m were cleanly
and efficiently oxidized to the carboxylic acids utilizing
a two-step process which first involved an oxidation to
the aldehyde intermediates using Pyr*SO3 complex17,18

followed by sodium chlorite mediated oxidation of the
crude aldehydes to give carboxylic acids 10c–n.19 This
two step procedure was high yielding and further purifi-
cation was not required beyond a simple aqueous work-
up after each of the two steps.

The utility of these 5-aryl-4-bromoisoxazole scaffolds for
the solid-phase organic synthesis of 4,5-diarylisoxazoles
is outlined in Scheme 3. First, the acid-cleavable linker
4-(4 0-formyl-3 0-methoxy)phenoxybutyric acid, was
attached (DIC, HOBt, DCM) to double-loaded Argo-
gel�20 giving resin bound aldehyde 11. Attachment of
the primary R1 amine component, benzyl amine, was
achieved using standard reductive amination conditions
(NaB(OAc)3H, DCE) to give resin bound amine 12.3

Coupling of carboxylic acid 10m (R2 diversity element)
using PyBrOP in DMF gave the resin bound 5-aryl-4-
bromoisoxazole intermediate 13. Clean and quantitative
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conversion to resin bound bromoisoxazole 13 was
observed as determined by bromophenol blue test and
LC–MS examination of the product obtained from
TFA cleavage of a small sample of resin. Compound
13 was then cleanly coupled with 4-methoxyphenyl
boronic acid (R3 diversity element) at 65 �C using 10%
Pd(PPh3)4 in 4:1 DME/EtOH in the presence of
K2CO3 (aq) for 2 h. To achieve a full conversion to
14, the Suzuki coupling reaction was performed twice.
Finally, the desired 4,5-diarylisoxazole product was
cleaved from the solid support with 50% TFA in
DCM for 2 h. The desired product 15 was obtained in
a good purity (84% by HPLC) and in 47% yield after
purification by standard silica gel chromatography.21

In conclusion, we have developed a concise synthesis of
5-aryl-4-bromo-3-carboxyisoxazoles which utilizes a
novel [3+2] cycloaddition of a nitrile N-oxide and a



1742 J. J. Letourneau et al. / Tetrahedron Letters 48 (2007) 1739–1743
2-aryl-1-bromoalkyne as the key step. In addition, we
have demonstrated the utility of these 5-aryl-4-bromo-
3-carboxyisoxazoles for the solid-phase synthesis of
4,5-diarylisoxazoles.
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